''Candidatus'' Carsonella ruddii

Candidatus Carsonella ruddii
Scientific classification
Kingdom: Bacteria
Phylum: Proteobacteria
Class: Gamma Proteobacteria
Order: unclassified
Genus: Candidatus Carsonella
Species: Ca. C. ruddii
Binomial name
Candidatus Carsonella ruddii
Thao et al. 2000

Candidatus Carsonella ruddii is an obligate endosymbiotic Gamma Proteobacterium[1] with one of the smallest genomes of any characterised bacteria.[2]

Endosymbiosis

The species is an endosymbiont that is present in all species of phloem sap-feeding insects known as psyllids.[3][4] The endosymbionts occurs in a specialised structure known as the bacteriome.

C. ruddii is not completely parasitic in its relationship with its host insect; it supplies the host with some essential amino acids. It is therefore probably in the evolutionary process of becoming an organelle, like the mitochondria of mammalian cells.[5]

Genome

In 2006 the genome of Ca. C. ruddii strain Pv (Carsonella-Pv) of the hackberry petiole gall psyllid, Pachypsylla venusta, was sequenced at RIKEN in Japan and the University of Arizona. It was shown that the genome consists of a circular chromosome of 159,662 base pairs and that it has a high coding density (97%) with many overlapping genes and reduced gene length. The number of predicted genes was 182, also the lowest on record (NCBI-Genome). In comparison, Mycoplasma genitalium, which has the smallest genome of any free-living organism, has a genome of 521 genes. Numerous genes considered essential for life seem to be missing, suggesting that the species may have achieved organelle-like status.[2]

At the time of its sequencing, C. ruddii was thought to have the smallest genome of any characterized bacterial species.[6] Nasuia deltocephalinicola is now considered to have the known smallest bacterial genome (112kb).[7]

C. ruddii and related species appear to be actively undergoing gene loss.[8]

References

  1. Spaulding, A. W.; von Dohlen, C. D. (1998). "Phylogenetic Characterization and Molecular Evolution of Bacterial Endosymbionts in Psyllids (Hemiptera: Sternorrhyncha)". Molecular Biology and Evolution. 15 (11): 1506–1513. doi:10.1093/oxfordjournals.molbev.a025878. PMID 12572614.
  2. 1 2 Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar H, Moran N, Hattori M (2006). "The 160-kilobase genome of the bacterial endosymbiont Carsonella". Science. 314 (5797): 267. doi:10.1126/science.1134196. PMID 17038615.
  3. Thao, M.L. (2000). "Cospeciation of Psyllids and Their Primary Prokaryotic Endosymbionts". Applied and Environmental Microbiology. 66 (7): 2898–2905. doi:10.1128/aem.66.7.2898-2905.2000. PMC 92089. PMID 10877784.
  4. Thao, M.L. (2001). "Phylogenetic analysis of vertically transmitted psyllid endosymbionts (Candidatus Carsonella ruddii) based on atpAGD and rpoC: comparisons with 16S-23S rDNA-derived phylogeny". Current Microbiology. 42 (6): 419–21. doi:10.1007/s002840010240. PMID 11381334.
  5. Tortora(1), Funke(2), Case(3), Gerard J(1), Berdell R(2), Christine L(3) (2016). Microbiology: An Introduction (12th Edition). USA: Pearson. p. 315. ISBN 978-0321929150.
  6. Moran, Nancy A.; Bennett, Gordon M. (8 September 2014). "The Tiniest Tiny Genomes". Annual Review of Microbiology. 68 (1): 195–215. doi:10.1146/annurev-micro-091213-112901. PMID 24995872.
  7. Bennett, G. M.; Moran, N. A. (5 August 2013). "Small, Smaller, Smallest: The Origins and Evolution of Ancient Dual Symbioses in a Phloem-Feeding Insect". Genome Biology and Evolution. 5 (9): 1675–1688. doi:10.1093/gbe/evt118. PMC 3787670. PMID 23918810.
  8. Sloan, D. B.; Moran, N. A. (19 July 2012). "Genome Reduction and Co-evolution between the Primary and Secondary Bacterial Symbionts of Psyllids". Molecular Biology and Evolution. 29 (12): 3781–3792. doi:10.1093/molbev/mss180. PMC 3494270. PMID 22821013.
This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.