Atom optics

Atom optics (or atomic optics) is the area of physics which deals with beams of cold, slowly moving neutral atoms, as a special case of a particle beam. Like an optical beam, the atomic beam may exhibit diffraction and interference, and can be focused with a Fresnel zone plate[1] or a concave atomic mirror.[2] Several scientific groups work in this field.[3]

Until 2006, the resolution of imaging systems based on atomic beams was not better than that of an optical microscope, mainly due to the poor performance of the focusing elements. Such elements use small numerical aperture; usually, atomic mirrors use grazing incidence, and the reflectivity drops drastically with increase of the grazing angle; for efficient normal reflection, atoms should be ultracold, and dealing with such atoms usually involves magnetic, magneto-optical or optical traps rather than an optics.

Recent scientific publications about Atom Nano-Optics, evanescent field lenses[4] and ridged mirrors[5][6] show significant improvement since the beginning of the 21st century. In particular, an atomic hologram can be realized.[7] An extensive review article "Optics and interferometry with atoms and molecules" appeared in July 2009.[8] More bibliography about Atom Optics can be found at the Resource Letter.[9]

See also

References

  1. R.B.Doak; R.E.Grisenti; S.Rehbein; G.Schmahl; J.P.Toennies; Ch. Wöll (1999). "Towards Realization of an Atomic de Broglie Microscope: Helium Atom Focusing Using Fresnel Zone Plates" (PDF). PRL. 83 (21): 4229–4232. Bibcode:1999PhRvL..83.4229D. doi:10.1103/PhysRevLett.83.4229. Archived from the original (PDF) on 2011-07-19.
  2. J.J.Berkhout; O.J.Luiten; I.D.Setija; T.W.Hijmans; T.Mizusaki; J.T.M.Walraven (1989). "Quantum reflection: Focusing of hydrogen atoms with a concave mirror" (PDF). Physical Review Letters. 63 (16): 1689–1692. Bibcode:1989PhRvL..63.1689B. doi:10.1103/PhysRevLett.63.1689. PMID 10040645.
  3. Atom Optics at the University of Queensland (Australia) homepage "Archived copy". Archived from the original on 2012-03-17. Retrieved 2004-03-03.
  4. V.Balykin, V.Klimov, and V.Letokhov. OPN, March 2005, p.44-48; http://www.osa-opn.org/abstract.cfm?URI=OPN-16-3-44%5Bpermanent+dead+link%5D
  5. H.Oberst; D.Kouznetsov; K.Shimizu; J.Fujita; F. Shimizu (2005). "Fresnel Diffraction Mirror for an Atomic Wave". PRL. 94 (1): 013203. Bibcode:2005PhRvL..94a3203O. doi:10.1103/PhysRevLett.94.013203. PMID 15698079.
  6. D.Kouznetsov; H. Oberst; K. Shimizu; A. Neumann; Y. Kuznetsova; J.-F. Bisson; K. Ueda; S. R. J. Brueck (2006). "Ridged atomic mirrors and atomic nanoscope". JOPB. 39 (7): 1605–1623. Bibcode:2006JPhB...39.1605K. doi:10.1088/0953-4075/39/7/005.
  7. Shimizu; J. Fujita (2002). "Reflection-Type Hologram for Atoms". Physical Review Letters. 88 (12): 123201. Bibcode:2002PhRvL..88l3201S. doi:10.1103/PhysRevLett.88.123201. PMID 11909457.
  8. Cronin, Alexander D.; Jörg Schmiedmayer; David E. Pritchard (2009). "Optics and interferometry with atoms and molecules" (PDF). Reviews of Modern Physics. 81 (3): 1051. arXiv:0712.3703. Bibcode:2009RvMP...81.1051C. doi:10.1103/RevModPhys.81.1051. Archived from the original (PDF) on 2011-07-19.
  9. Rohwedder, B. (2007). "Resource Letter AON-1: Atom optics, a tool for nanofabrication". American Journal of Physics. 75 (5): 394–406. Bibcode:2007AmJPh..75..394R. doi:10.1119/1.2673209.
  • Atomic and Optical Science Researchers at the University of Arizona: http://www.atomwave.org.
  • Pierre Meystre. Atom Optics ASIN 0387952748
  • F, Schmidt-Kaler; T Pfau; P Schmelcher; W Schleich (2010). "Focus on Atom Optics and its Applications". New Journal of Physics. 12 (6): 065014. Bibcode:2010NJPh...12f5014S. doi:10.1088/1367-2630/12/6/065014.


This article is issued from Wikipedia. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.