< General Biology < Getting Started

General Biology | Getting Started | Cells | Genetics | Classification | Evolution | Tissues & Systems | Additional Material


Building blocks of life

  • Carbon based: organic molecules
  • Carbohydrates: CHO
  • Lipids: CHO, water insoluble
  • Proteins: CHONS, structure/function in cells
  • Nucleic acids: CHONP, hereditary (genetic) information

Carbon

  • Can make 4 covalent bonds
    • Chains
      • Straight
      • Branched
      • Ring
    • Hydrocarbons (C, H): store energy
    • Functional groups
      • Attach to carbon
      • Alter chemical properties
      • Form macromolecules
      • Sapoteton

Carbohydrates

  • Principally CHO (rare N, S and P)
    • 1C:2H:1O ratio
    • Energy rich (many C-H bonds)
  • Monosaccharides (principal: glucose)
    • Simple sugars
    • Principle formula: C6H12O6
    • Form rings in water solution
  • Disaccharides (sucrose, lactose)
  • Polysaccharides (starch, glycogen, cellulose, chitin)

Stereoisomers

  • Bond angles of carbon point to corners of a tetrahedron
  • When 4 different groups are attached to a carbon, it is asymmetric, leading to various types of isomerism
    • Stereoisomers: (D, L)
  • Same chemical properties
  • Different biological properties
  • D sugars, L amino acids

Lipids

  • C-H bonds (nonpolar) instead of C-OH bonds as in carbohydrates
    • High energy
    • Hydrophobic (insoluble in water)
  • Categories
    • Fats: glycerol and three fatty acids
    • Phospholipids: primary component of membranes
    • Prostaglandins: chemical messengers (hormones)
    • Steroids: membrane component; hormones
    • Terpenes: pigments; structure

Fatty acids

  • Hydrocarbon chain
    • Even number of C, 14->20
    • Terminates in carboxyl group
  • Saturated: contain maximum number of hydrogens (all single bonds); maximum energy
  • Unsaturated: one or more double bonds
    • Usually higher melting point
    • Many common oils are polyunsaturated

Proteins

  • Polymer of amino acids
    • 21 different amino acids found in proteins
    • Sequence of amino acids determined by gene
  • Amino acid sequence determines shape of molecule
    • Linked by peptide bond (covalent)
  • Functions
    • regulate chemical reactions and cell processes [enzymes]
    • form bone and muscle; various other tissues
    • facilitate transport across cell membrane [carrier proteins]
    • fight disease [antibodies]
  • Motifs: folding patterns of secondary structure
  • Domains: structural, functional part of protein often independent of another part; often encoded by different exons
  • Shape determines protein's function

Amino acids

  • 21 commonly found in proteins
    • 21st is selenocysteine, not mentioned in text
  • Common structure
    • Amino group: NH2
    • Carboxyl group: COOH
    • R group- 4 different kinds of R groups
      • acidic
      • basic
      • hydrophilic (polar)
      • hydrophobic (nonpolar)
  • Confer individual properties on amino acids
  • List of amino acids

Structure

  • Primary structure: the amino acid sequence
    • Determines higher orders of structure
    • Critical for structure and function of protein
  • Secondary: stabilized by intramolecular hydrogen bonding
    • helix
    • sheet
  • Tertiary: folding, stabilized by ionic bonds (between R groups), hydrogen bonding, van der Waal's forces, hydrophobic interactions
  • Quaternary: _ 2 polypeptides

Function

  • Requires proper folding, cofactors, pH, temperature, etc.
  • Proteins are often modified after synthesis
    • Chemical modification
    • Addition of heme groups (hemoglobin, cytochrome)
  • Denatured proteins can not function properly
  • Proteins are degraded by proteosome as part of constant turnover of cell components

Hereditary (Genetic) information

  • Nucleic acids
    • DNA: deoxyribonucleic acid
  • Hereditary information of all cells
  • Hereditary information for many viruses
    • RNA: ribonucleic acid
  • Hereditary information of certain viruses (HIV)
  • Intermediate in gene expression
  • Composed of nucleotides
    • Ribonucleotides
    • Deoxyribonucleotides

RNA DNA origin

  • Which came first?
  • Paradox: DNA encodes protein necessary for its own replication
  • Discovery of catalytic RNA by Cech and Altman suggested that RNA might have been first self-replicating molecule
  • DNA evolved as more stable type of storage molecule

Proteins: Their building block is amino acids. The bond connecting 2 of the amino acids together are called peptide bonds. One of these bonds makes a monopeptide, two a dipeptide, and any more than that makes a polypeptide.

References

This text is based on notes very generously donated by Dr. Paul Doerder, Ph.D., of the Cleveland State University.

This article is issued from Wikibooks. The text is licensed under Creative Commons - Attribution - Sharealike. Additional terms may apply for the media files.